skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ohashi, Masao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. Covering: 2000 to 2018 Pericyclic reactions are a distinct class of reactions that have wide synthetic utility. Before the recent discoveries described in this review, enzyme-catalyzed pericyclic reactions were not widely known to be involved in biosynthesis. This situation is changing rapidly. We define the scope of pericyclic reactions, give a historical account of their discoveries as biosynthetic reactions, and provide evidence that there are many enzymes in nature that catalyze pericyclic reactions. These enzymes, the “pericyclases,” are the subject of this review. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Abstract We uncovered and reconstituted a concise biosynthetic pathway of the strained dipeptide (+)‐azonazine A from marine‐derivedAspergillus insulicola. Formation of the hexacyclic benzofuranoindoline ring system from cyclo‐(l‐Trp‐N‐methyl‐l‐Tyr) is catalyzed by a P450 enzyme through an oxidative cyclization. Supplementing the producing strain with various indole‐substituted tryptophan derivatives resulted in the generation of a series of azonazine A analogs. 
    more » « less